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Abstract: The paper is concerned with the existence and global exponential stability of periodic solutions for
inertial Cohen-Grossberg-type BAM neural networks with time delays. With variable transformation the system
is transformed to first order differential equations. Some new sufficient conditions ensuring the existence and
global exponential stability of periodic solutions for the system are derived by constructing suitable Lyapunov
functions, using Weierstrass criteria and boundedness of the solutions. Finally, an example is given to demonstrate
the obtained results.
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1 Introduction
Dynamical characteristics of neural networks have be-
come the subject of intensive research in recent years.
As supposed in most studies of neural networks, a
mammal’s brain may be exploiting dynamic attrac-
tors for its encoding and storage of associative mem-
ories rather than static attractor[1-3]. The Cohen-
Grossberg-type BAM neural networks model (i.e.the
BAM model that possesses Cohen-Grossberg dynam-
ics) initially proposed by Cohen and Grossberg[4],
has their promising potential for the tasks of paral-
lel computation, associative memory and have great
ability to solve difficult optimization problems. The
Cohen-Grossberg-type BAM neural networks with
time delays can be expressed as:

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








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























dui(t)
dt

= −ai(ui(t))[bi(ui(t)) −
m
∑

j=1
cijfj(vj(t))

−
m
∑

j=1
dijfj(vj(t− τji))− Ii(t)],

dvj(t)
dt

= −ej(vj(t))[hj(vj(t))−
n
∑

i=1
pjigi(ui(t))

−
n
∑

i=1
qjigi(ui(t− σij))− Jj(t)],

(I)
We also know that it is fundamental importance to de-
termine the convergence of the solutions of a system
of differential equations to either one of a number of
equilibria, or else to periodic solutions: in the context
of pattern recognition, content-addressable memories
are nothing more than asymptotically stable station-

ary solutions with basins of attraction of a positive
measure[5]. Now there have been many results on the
stability of solutions of Cohen-Grossberg-type BAM
neural networks, see [6-21].

On the other hand, the inertia can be considered
an useful tool that is added to help in the generation
of chaos in neural systems. It is very useful and sig-
nificant to introduce an inertial term ( the influence
of inductance ) into the standard neural system. For
example, Li et al. [22] added the inertia to a delay
differential equation which can be described by

ẍ = aẋ− bx+ cf(x− hx(t− τ)).

and obtained obviously chaotic behavior. Wheeler
and Schieve[23] added the inertia to the Hopfield
effective-neuron system with a continuous-time which
is shown to exhibit chaos. They explain the chaos
is confirmed by Lyapunov exponents, power spectra,
and phase space plots, this system is described by

ẍ1 = −a11ẋ1−a12x1+a13tanh(x1)+a14tanh(x2),

ẍ2 = −b11ẋ2 − b12x2 + b13tanh(x1)+ b14tanh(x2).

Babcocka et al. [24] studied the electronic neural
networks with added inertia and founded when the
neuron couplings are of an inertial nature, the dy-
namics can be complex in contrast to the simpler
behavior displayed when they are of the standard
resistor-capacitor variety. For various values of the
neuron gain and the quality factor of the couplings
they find ringing about the stationary points, insta-
bility and spontaneous oscillation, intertwined basins
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of attraction, and chaotic response to a harmonic
drive. Juhong and Jing [25]considered an inertial
four-neuron delayed bidirectional associative mem-
ory model. Weak resonant double Hopf bifurcations
are completely analyzed in the parameter space of
the coupling weight and the coupling delay by the
perturbation-incremental scheme. In [26], A kinemat-
ical description of traveling waves in the oscillations
in the networks is extended to networks with inertia.
When the inertia is below a critical value the state
of each neuron is over-damped, properties of the net-
works are qualitatively the same as those without in-
ertia. The duration of the transient oscillations then
increases with inertia, and the increasing rate of the
logarithm of the duration becomes more than double.
When the inertia exceeds a critical value and the state
of each neuron becomes under-damped, properties of
the networks qualitatively change. The periodic solu-
tion is stabilized through the pitchfork bifurcation as
inertia increases. More bifurcations occur so that var-
ious periodic solutions are generated, and the stability
of the periodic solutions changes alternately. Further,
stable oscillations generated with inertia are observed
in an experiment on an analog circuit. Others, Liu et
al. [27-28] investigated the Hopf bifurcation and dy-
namics of an inertial two-neuron system or in a single
inertial neuron mode. The authors Ke and Miao [29-
30] investigated stability of equilibrium point and pe-
riodic solutions in inertial BAM neural networks with
time delays and unbounded delays, respectively.

To the best of our knowledge, few authors have
considered the existence and exponential stability
of periodic solutions for the Cohen-Grossberg-type
BAM neural networks, which is very important in
theories and applications. We consider the following
Cohen-Grossberg-type BAM neural networks with in-
ertia


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
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















d2ui(t)
dt2

= −αi
dui(t)
dt

− ai(ui(t))[bi(ui(t))

−
m
∑

j=1
cijfj(vj(t))−

m
∑

j=1
dijfj(vj(t− τji))− Ii(t)],

d2vj(t)
dt2

= −βj
dvj(t)
dt

− ej(vj(t))[hj(vj(t))

−
n
∑

i=1
pjigi(ui(t))−

n
∑

i=1
qjigi(ui(t− σij))− Jj(t)],

(1)
for i = 1, 2, · · · , n, j = 1, 2, · · · ,m, where the sec-
ond derivative are called inertial term of system (1);
αi > 0 andβj > 0 are constants;ui(t) andvj(t) are
the state of theith neurons from the neural fieldFU

and thejth neurons from the neural fieldFV at timet,
respectively;ai(ui(t))andej(vj(t)) represent amplifi-
cation function of thejth neurons and theith neurons
at timet, respectively;bi(ui(t))andhj(vj(t)) are ap-
propriately behaved function of thejth neurons and

theith neurons at timet, respectively;cij , dij , pji and
qji are constants, and denote the connection strengths;
fj andgi denote the activation function.τji andσij
denote correspond to the transmission delays and sat-
isfy 0 ≤ τji ≤ τ and0 ≤ σij ≤ σ; Ii andJj denote
the external inputs on theith neurons from the neural
fieldFU and thejth neurons from the neural fieldFV ,
respectively.

The initial values of system (1) are

{

ui(s) = ϕui(s),
dui(s)
dt

= ψui(s),−τ ≤ s ≤ 0,

vj(s) = ϕvj(s),
dvj(s)
dt

= ψvj(s),−σ ≤ s ≤ 0,

(2)

whereϕui(s), ψui(s), ϕvj(s) andψvj(s) are bounded
and continuous function.

From the viewpoints of mathematics and physics,
the system (1) is a class of nonlinear second-order
dynamical system whereαi > 0 is a damping co-
efficient, then the system (I) can be considered as a
model overdamped ( i.e. the damp tend to infinite).
In practical application it is necessary to consider the
existence and stability of periodic solutions of system
with damp (or weak damp).

This paper is organized as follows. Model de-
scription and some preliminaries are given in Sec-
tion 2. In Section 3, the sufficient conditions are
derived for the existence and exponential stability of
periodic solutions for inertial Cohen-Grossberg-type
BAM neural networks with time delays. In Section 4,
an illustrative example is given to show the effective-
ness of the proposed theory. Finally conclusions are
drawn in section 5.

2 Model description and preliminar-
ies

Throughout this paper, we make the following as-
sumptions wherei = 1, 2, · · · , n, j = 1, 2, · · · ,m.
(H1) The activation functionsfj(·), gi(·) are bounded
and satisfy Lipschitz condition, i.e., there exist
constantLj > 0, f̄j > 0, Ni > 0, ḡi > 0, such that

|fj(v1)− fj(v2)| ≤ Lj|v1 − v2|, |fj(x)| ≤ f̄j;

|gi(v1)− gi(v2)| ≤ Ni|v1 − v2|, |gi(x)| ≤ ḡi;

for ∀v1, v2, x ∈ R.
(H2) Ii(·) andJj(·) are continuously periodic func-
tions defined ont ∈ [0,∞) with common period
ω > 0, and satisfy

0 ≤ |Ii(t)| ≤ Īi, 0 ≤ |Jj(t)| ≤ J̄j ,
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whereĪi ≥ 0, J̄j ≥ 0 are constant.
(H3) ai(·), ej(·) are continuously differentiable func-
tions and satisfy

|a′i(x)| ≤ a∗i , 0 < ai ≤ ai(x) ≤ āi, ∀x ∈ R;

|e′j(x)| ≤ e∗j , 0 < ej ≤ ej(x) ≤ ēj, ∀x ∈ R;

wherea∗i , e
∗
j , ai, ej, āi, ēj > 0 are constant.

(H4) bi(·), hj(·)are continuously differentiable func-
tions and satisfy

bi(0) = 0, 0 ≤ bi ≤ b′i(x) ≤ b̄i, ∀x ∈ R;

hj(0) = 0, 0 ≤ hj ≤ h′j(x) ≤ h̄j , ∀x ∈ R;

wherebi, hj, b̄i, h̄j > 0 are constant.
(H5) ai(·), bj(·), ej(·), hj(·) are continuously differ-
entiable functions and satisfy

0 < Ki ≤ (ai(x)bi(x))
′ ≤ K̄i, ∀x ∈ R;

0 < T i ≤ (ej(x)hj(x))
′ ≤ T̄j , ∀x, y ∈ R;

whereK̄i, T̄j ,Ki, T j > 0 are constant.
Introducing variable transformation
{

yi(t) =
dui(t)
dt

+ ui(t), i = 1, 2, · · · , n,

zj(t) =
dvj(t)
dt

+ vj(t), j = 1, 2, · · · ,m.

then (1) and (2) can be rewritten as






















































































dui(t)
dt

= −ui(t) + yi(t),
dyi(t)
dt

= −(1− αi)ui(t)− (αi − 1)yi(t)

−ai(ui(t))[bi(ui(t))−
m
∑

j=1
cijfj(vj(t))

−
m
∑

j=1
dijfj(vj(t− τji))− Ii(t)],

dvj (t)
dt

= −vj(t) + zj(t),
dzj(t)
dt

= −(1− βj)vj(t)− (βj − 1)zj(t)

−ej(vj(t))[hj(vj(t))−
n
∑

i=1
pjigi(ui(t))

−
n
∑

i=1
qjigi(ui(t− σij))− Jj(t)],

(3)
and


















ui(s) = ϕui(s),
dui(s)
dt

= ψui(s), −τ ≤ s ≤ 0,
yi(s) = ϕui(s) + ψui(s)

.
= ϕ̄ui(s), −τ ≤ s ≤ 0,

vj(s) = ϕvj(s),
dvj(s)
dt

= ψvj(s), −σ ≤ s ≤ 0,
zj(s) = ϕvj(s) + ψvj(s)

.
= ϕ̄vj(s), −σ ≤ s ≤ 0,

(4)
for i = 1, 2, · · · , n, j = 1, 2, · · · ,m.
Let

Ui(t) =

(

ui(t)
yi(t)

)

, Vj(t) =

(

vj(t)
zj(t)

)

,

system (3) can becomes

dUi(t)

dt
= −AiUi(t) + P

(

0
Fi(ui(t), vj(t))

)

, (5)

dVj(t)

dt
= −BjVj(t) + P

(

0
Gj(ui(t), vj(t))

)

, (6)

where

P =

(

0 0
0 1

)

, Ai =

(

1 −1
1− αi αi − 1

)

,

Bj =

(

1 −1
1− βj βj − 1

)

,

Fi(ui(t), vj(t)) = −ai(ui(t))[bi(ui(t))

−
m
∑

j=1

cijfj(vj(t))−
m
∑

j=1

dijfj(vj(t− τji))− Ii(t)],

Gj(ui(t), vj(t)) = −ej(vj(t))[hj(vj(t))

−

n
∑

i=1

pjigi(ui(t))−

n
∑

i=1

qjigi(ui(t− σij))− Jj(t)],

for i = 1, 2, · · · , n, j = 1, 2, · · · ,m.
Let

u(t) = (u1(t), u2(t), · · · , un(t))
T ,

v(t) = (v1(t), v2(t), · · · , vm(t))T ,

u∗(t) = (u∗1(t), u
∗
2(t), · · · , u

∗
n(t))

T ,

v∗(t) = (v∗1(t), v
∗
2(t), · · · , v

∗
m(t))T .

Definition 1. Let (u∗T (t), v∗T (t))T be anω− peri-
odic solution of system (1) with initial value

u∗i (s) = ϕ∗
ui(s),

du∗i (s)

dt
= ψ∗

ui(s), −τ ≤ s ≤ 0,

v∗j (s) = ϕ∗
vj(s),

dv∗j (s)

dt
= ψ∗

vj(s), −σ ≤ s ≤ 0.

For every solution(uT (t), vT (t))T of system (1) with
any initial value

ui(s) = ϕui(s),
dui(s)

dt
= ψui(s), −τ ≤ s ≤ 0,

vj(s) = ϕvj(s),
dvj(s)

dt
= ψvj(s), −σ ≤ s ≤ 0,

If there exist constantsη > 0 andM > 1, such that

n
∑

i=1

(ui(t)− u∗i (t))
2 +

m
∑

j=1

(vj(t)− v∗j (t))
2

≤Me−ηt[‖ϕu − ϕ∗
u‖

2 + ‖ϕv − ϕ∗
v‖

2], t ≥ 0,
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then periodic solution(u∗T (t), v∗T (t))T is said to be
globally exponentially stable, where

‖ϕu − ϕ∗
u‖

2 = sup
−τ≤t≤0

n
∑

i=1
|ϕui(t)− ϕ∗

ui(t)|
2,

‖ϕv − ϕ∗
v‖

2 = sup
−σ≤t≤0

m
∑

j=1
|ϕvj(t)− ϕ∗

vj(t)|
2.

3 Main results
In this section, we can derive some sufficient condi-
tions which ensure the globally exponential stability
and existence of periodic solutions for system (1) by
constructing a suitable Lyapunov function and some
analysis techniques, such as Weierstrass criteria of se-
ries, the method of magnifying and shrinking of in-
equality, etc.

Theorem 1 For system (1), under the hypotheses
(H1) − (H5), ui(t), u′i(t), vj(t), v

′
j(t) are bounded,

for i = 1, 2, · · · , n, j = 1, 2, · · · ,m, t ≥ 0.

Proof: It follows from (1) that

d2|ui(t)|
dt2

= −αi
d|ui(t)|

dt

−sgn(ui(t))ai(ui(t))bi(ui(t))

+sgn(ui(t))ai(ui(t))[
m
∑

j=1
cijfj(vj(t))

+
m
∑

j=1
dijfj(vj(t− τij)) + Ii(t)]

≤ −αi
d|ui(t)|

dt
−Ki|ui(t)|

+āi[
m
∑

j=1
f̄j(|cij |+ |dij |) + Īi].

(7)
From (7), we can obtain

|ui(t)| ≤ C1e
λ1t + C2e

λ2t

+ 1
ai
[
m
∑

j=1
f̄j(|cij |+ |dij |) + Īi], (8)

whereλ1,2 =
−αi±

√
α2

i−4Ki

2 , C1, C2 are any real con-
stants. Sinceαi > 0, we haveRe(λ1) < 0,Re(λ2) <
0, formula (8) shows that allui(t) are bounded fori =
1, 2, · · · , n, t ≥ 0. We may assume that|ui(t)| ≤ Ri,
Ri > 0 are constants,i = 1, 2, · · · , n.

On the other hand, from (1) we also can obtain

dui(t)
dt

= e−αit dui(0)
dt

− e−αit
∫ t

0 e
αisai(ui(s))

[bi(ui(s))−
m
∑

j=1
cijfj(uj(s))

−
m
∑

j=1
dijfj(uj(s − τij))− Ii(s)] ds, (9)

From (9), we have

|dui(t)
dt

| ≤ |ϕui(0)|

+ 1
αi
[K̄iRi + āi

m
∑

j=1
f̄j(|cij |+ |dij |) + Īi], (10)

Formula (10) shows that allu′i(t) are bounded for
i = 1, 2, · · · , n, t ≥ 0. Similar to the above
method, we can obtainvj(t), v′j(t)are bounded,j =
1, 2, · · · ,m, t ≥ 0. ⊓⊔

Theorem 2 Under the hypotheses(H1)− (H5), if

αi − K̄i > 0, βj − T̄j > 0,

−2 + αi −Ki + a∗i

m
∑

j=1
f̄j(|cij |+ |dij |)

+
m
∑

j=1
ējNi(|pji|+ |qji|) + a∗i Īi < 0,

2− αi −Ki + a∗i

m
∑

j=1
f̄j(|cij |+ |dij |)

+
m
∑

j=1
āiLj(|cij |+ |dij |) + a∗i Īi < 0,

−2 + βj − T j + e∗j

n
∑

i=1
ḡi(|pji|+ |qji|)

+
n
∑

i=1
āiLj(|cij |+ |dij |) + e∗j J̄j < 0,

2− βj − T j + e∗j

n
∑

i=1
ḡi(|pji|+ |qji|)

+
n
∑

i=1
ējNi(|pji|+ |qji|) + e∗j J̄j < 0,

for i = 1, 2, · · · , n, j = 1, 2, · · · ,m, then system (1)
has oneω− periodic solution, which is globally expo-
nentially stable.

Proof: Let (u∗T (t), v∗T (t))T be an solution of sys-
tem (1) with initial value

u∗i (s) = ϕ∗
ui(s),

du∗i (s)

dt
= ψ∗

ui(s), −τ ≤ s ≤ 0,

v∗j (s) = ϕ∗
vj(s),

dv∗j (s)

dt
= ψ∗

vj(s), −σ ≤ s ≤ 0.

(uT (t), vT (t)) be an solution of system (1) with initial
value

ui(s) = ϕui(s),
dui(s)

dt
= ψui(s), −τ ≤ s ≤ 0,

vj(s) = ϕvj(s),
dvj(s)

dt
= ψvj(s), −σ ≤ s ≤ 0.

y∗i (t) =
du∗

i (t)
dt

+ u∗i (t), z∗j (t) =
dv∗j (t)

dt
+ v∗j (t),

Ūi(t) =

(

ui(t)− u∗
i (t)

yi(t)− y∗
i (t)

)

, V̄j(t) =

(

vj(t)− v∗j (t)
zj(t)− z∗j (t)

)

,
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for i = 1, 2 · · · , n, j = 1, 2 · · · ,m.
From (5), we have

dŪi(t)

dt
= −AiŪi(t) + P

(

0
F̄i(ūi(t), v̄j(t))

)

, (11)

where

F̄i(ūi(t), v̄j(t)) = −ai(ui(t))[bi(ui(t))

−

m
∑

j=1

cijfj(vj(t))−

m
∑

j=1

dijfj(vj(t− τji))− Ii(t)]

+ai(u
∗
i (t))[bi(u

∗
i (t)) −

m
∑

j=1

cijfj(v
∗
j (t))

−
m
∑

j=1

dijfj(v
∗
j (t− τji))− Ii(t)].

Left multiplying both sides of (11) with

ŪT
i = (ui(t)− u∗i (t), yi(t)− y∗i (t)),

we get

ŪT
i

dŪi

dt
= −(ui(t)− u∗i (t))

2 + (1− αi)(yi(t)− y∗i (t))
2

+αi(ui(t)− u∗i (t))(yi(t)− y∗i (t)) + (yi(t)− y∗i (t))·
{

− [ai(ui(t))bi(ui(t))− ai(u
∗
i (t))bi(u

∗
i (t))]

+ai(ui(t))
m
∑

j=1
cij [fj(vj(t))− fj(v

∗
j (t))]

+ai(ui(t))
m
∑

j=1
dij [fj(vj(t− τji))− fj(v

∗
j (t− τji))]

+[ai(ui(t))− ai(u
∗
i (t))]·

[
m
∑

j=1
cijfj(v

∗
j (t)) +

m
∑

j=1
dijfj(v

∗
j (t− τji))]

+[ai(ui(t))− ai(u
∗
i (t))]Ii(t)

}

≤ −(ui(t)− u∗i (t))
2 + (1− αi)(yi(t)− y∗i (t))

2

+[αi −
ai(ui(t))bi(ui(t))−ai(u∗

i (t)
ui(t)−u∗

i (t)
]

× (ui(t)− u∗i (t))(yi(t)− y∗i (t))

+|yi(t)− y∗i (t)| ·
{

āi
m
∑

j=1
|cij |Lj|vj(t)− v∗j (t)|

+āi
m
∑

j=1
|dij |Lj|vj(t− τji)− v∗j (t− τji)|

+a∗i |ui(t)− u∗i (t)|
m
∑

j=1
f̄j(|cij |+ |dij |)

+a∗i Īi|ui(t)− u∗i (t)|
}

.
(12)

where

αi−K̄i ≤ αi−
ai(ui(t))bi(ui(t))− ai(u

∗
i (t)

ui(t)− u∗i (t)
≤ αi−Ki,

If
αi − K̄i > 0,

it follows from (12) that

ŪT
i

dŪi

dt
≤ 1

2

[

− 2 + αi −Ki

+a∗i
m
∑

j=1
f̄j(|cij |+ |dij |) + a∗i Īi

]

(ui(t)− u∗i (t))
2

+1
2

[

2− αi −Ki + a∗i

m
∑

j=1
f̄j(|cij |+ |dij |)

+āi
m
∑

j=1
Lj(|cij |+ |dij |) + a∗i Īi

]

(yi(t)− y∗i (t))
2

+ āi
2

m
∑

j=1
|cij |Lj(vj(t)− v∗j (t))

2

+ āi
2

m
∑

j=1
|dij |Lj(vj(t− τji)− v∗j (t− τji))

2.

(13)
Similar to the above method, if

βj − T̄j > 0,

we can obtain

V̄ T
i

dV̄i

dt
≤ 1

2

[

− 2 + βj − T j

+e∗j
n
∑

i=1
ḡi(|pji|+ |qji|) + e∗i J̄j

]

(vj(t)− v∗j (t))
2

+1
2

[

2− βj − T j + e∗j

n
∑

i=1
ḡi(|pij |+ |qij |)

+ēj
n
∑

i=1
Ni(|pji|+ |qji|) + e∗j J̄j

]

(zj(t)− z∗j (t))
2

+
ēj
2

n
∑

i=1
|pji|Ni(ui(t)− u∗i (t))

2

+
ēj
2

n
∑

i=1
|qji|Ni(ui(t− σij)− u∗i (t− σij))

2.

(14)
We consider the Lyapunov functional:

V (t) = V1(t) + V2(t),

where

V1(t) =
n
∑

i=1

{

‖Ūi(t)‖
2

2 e2εt

+ āi
2

m
∑

j=1
|dij |Lj

∫ t

t−τji
(vj(s)− v∗j (s))

2e2ε(s+τji) ds
}

,

(15)

V2(t) =
m
∑

j=1

{‖V̄j(t)‖
2

2 e2εt

+
ēj
2

n
∑

i=1
|qji|Ni

∫ t

t−σij
(ui(s)− u∗i (s))

2e2ε(s+σij) ds
}

,

(16)
ε > 0 is a small number. By (13), we have the up-
per right Dini-derivativeD+V1(t) of V1(t) along the
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solution of (11)

D+V1(t) =
n
∑

i=1

{

ŪT
i

dŪi(t)
dt

e2εt + εe2εt‖Ūi(t)‖
2

+ āi
2

m
∑

j=1
|dij |Lj [(vj(t)− v∗j (t))

2e2ε(t+τji)

−(vj(t− τji)− v∗j (t− τji))
2e2εt]

}

≤
n
∑

i=1
e2εt

{

ε‖Ūi(t)‖
2 + 1

2 [−2 + αi −Ki

a∗i

m
∑

j=1
f̄j(|cij |+ |dij |) + a∗i Īi

]

(ui(t)− u∗i (t))
2

+1
2

[

2− αi −Ki + a∗i

m
∑

j=1
f̄j(|cij |+ |dij |)

+āi
m
∑

j=1
Lj(|cij |+ |dij |) + a∗i Īi

]

(yi(t)− y∗i (t))
2

+ āi
2

m
∑

j=1
|cij |Lj(vj(t)− v∗j (t))

2

+ āi
2

m
∑

j=1
|dij |Lj(vj(t)− v∗j (t))

2e2ετji
}

≤ 1
2

n
∑

i=1
e2εt

{

[2ε− 2 + αi −Ki

a∗i

m
∑

j=1
f̄j(|cij |+ |dij |) + a∗i Īi

]

(ui(t)− u∗i (t))
2

+
[

2ε+ 2− αi −Ki + a∗i

m
∑

j=1
f̄j(|cij |+ |dij |)

+āi
m
∑

j=1
Lj(|cij |+ |dij |) + a∗i Īi

]

(yi(t)− y∗i (t))
2

+āi
m
∑

j=1
Lj(|cij |+ |dij |e

2ετji)(vj(t)− v∗j (t))
2
}

.

(17)
Similar to the above method, by (14) we have the

upper right Dini-derivativeD+V2(t) of V2(t).

D+V2(t) ≤
1
2

m
∑

j=1
e2εt

{

[2ε − 2 + βj − T j

+e∗j
n
∑

i=1
ḡi(|pij |+ |qij |) + e∗j J̄j

]

(vj(t)− v∗j (t))
2

+
[

2ε+ 2− βj − T j + e∗j

n
∑

i=1
ḡi(|pij |+ |qij|)

+ēj
n
∑

i=1
Ni(|pji|+ |qji|) + e∗j J̄j

]

(zj(t)− z∗j (t))
2

+ēj
n
∑

i=1
Ni(|pji|+ |qji|e

2εσij )(ui(t)− u∗i (t))
2
}

.

(18)
It follows from (17), (18) that

D+V (t) = D+V1(t) +D+V2(t)

≤ 1
2

n
∑

i=1
e2εt

{

[2ε− 2 + αi −Ki + a∗i

m
∑

j=1
f̄j(|cij |+ |dij |)

+
m
∑

j=1
ējNi(|pji|+ |qji|e

2εσ) + a∗i Īi](ui(t)− u∗i (t))
2

+
[

2ε+ 2− αi −Ki + a∗i

m
∑

j=1
f̄j(|cij |+ |dij |)

+āi
m
∑

j=1
Lj(|cij |+ |dij |) + a∗i Īi](yi(t)− y∗i (t))

2
}

+1
2

m
∑

j=1
e2εt

{

[2ε− 2 + βi − T̄j + e∗j

n
∑

i=1
ḡi(|pji|+ |qji|)

+
n
∑

i=1
āiLj(|cij |+ |dij |e

2ετ ) + e∗j J̄j ](vj(t)− v∗j (t))
2

+
[

2ε+ 2− βj − T j + e∗j

n
∑

i=1
ḡi(|pji|+ |qji|)

+ēj
n
∑

i=1
Ni(|pji|+ |qji|) + e∗j J̄j ](zj(t)− z∗j (t))

2
}

.

(19)
From condition of Theorem 2, we can choose a small
ε > 0 such that

2ε− 2 + αi −Ki + a∗i

m
∑

j=1
f̄j(|cij |+ |dij |)

+
m
∑

j=1
ējNi(|pji|+ |qji|e

2εσ) + a∗i Īi ≤ 0,

2ε+ 2− αi −Ki + a∗i

m
∑

j=1
f̄j(|cij |+ |dij |)

+āi
m
∑

j=1
Lj(|cij |+ |dij |) + a∗i Īi ≤ 0,

2ε− 2 + βi − T j + e∗j

n
∑

i=1
ḡi(|pji|+ |qji|)

+
n
∑

i=1
āiLj(|cij |+ |dij |e

2ετ ) + e∗j J̄j ≤ 0,

2ε+ 2− βj − T j + e∗j

n
∑

i=1
ḡi(|pji|+ |qji|)

+ēj
n
∑

i=1
Ni(|pji|+ |qji|) + e∗j J̄j ≤ 0,

for i = 1, 2 · · · , n, j = 1, 2 · · · ,m.

From (19), we getD+V (t) ≤ 0, and soV (t) ≤
V (0), for all t ≥ 0. From (15) and (16), we have

V (t) ≥
n
∑

i=1

‖Ūi(t)‖2

2 e2εt +
m
∑

j=1

‖V̄j(t)‖2

2 e2εt

=
n
∑

i=1

e2εt

2 [(ui(t)− u∗i (t))
2 + (yi(t)− y∗i (t))

2]

+
m
∑

j=1

e2εt

2 [(vj(t)− v∗j (t))
2 + (zj(t)− z∗j (t))

2].

(20)

V (0) =
n
∑

i=1
{‖Ūi(0)‖

2

2

+ āi
2

m
∑

j=1
|dij |Lj ·

∫ 0
−τji

(vj(s)− v∗j (s))
2e2ε(s+τji) ds}

+
m
∑

j=1
{
‖V̄j(0)‖2

2

+
ēj
2

n
∑

i=1
|qji|Ni ·

∫ 0
−σij

(ui(s)− u∗i (s))
2e2ε(s+σij) ds}
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=
n
∑

i=1
{
(ϕui(0)−ϕ

∗
ui(0))

2

2 +
(ϕ̄ui(0)−ϕ̄

∗
ui(0))

2

2

+ āi
2

m
∑

j=1
|dij |Lj ·

∫ 0
−τji

(ϕvj(s)−ϕ
∗
vj(s))

2e2ε(s+τji) ds}

+
m
∑

j=1
{
(ϕvj(0)−ϕ∗

vj (0))
2

2 +
(ϕ̄vj(0)−ϕ̄∗

vj(0))
2

2

+
ēj
2

n
∑

i=1
|qji|Ni ·

∫ 0
−σij

(ϕui(s)−ϕ
∗
ui(s))

2e2ε(s+σij) ds}

≤ ‖ϕu−ϕ∗
u‖

2

2 + ‖ϕ̄u−ϕ̄∗
u‖

2

2

+ τ
2e

2ετ
n
∑

i=1
āi max

1≤j≤m
{|dij |Lj}‖ϕv − ϕ∗

v‖
2

+‖ϕv−ϕ∗
v‖

2

2 + ‖ϕ̄v−ϕ̄∗
v‖

2

2

+σ
2 e

2εσ
m
∑

j=1
ēj max

1≤i≤n
{|qji|Ni}‖ϕu − ϕ∗

u‖
2

= 1
2 [1 + σe2εσ

m
∑

j=1
ēj max

1≤i≤n
{|qji|Ni}]‖ϕu − ϕ∗

u‖
2

+1
2 [1 + τe2ετ

n
∑

i=1
āi max

1≤j≤m
{|dij |Lj}]‖ϕv − ϕ∗

v‖
2

+‖ϕ̄u−ϕ̄∗
u‖

2

2 + ‖ϕ̄v−ϕ̄∗
v‖

2

2 ,
(21)

SinceV (0) ≥ V (t), from (20) and (21), we obtain
n
∑

i=1

e2εt

2 [(ui(t)− u∗i (t))
2 + (yi(t)− y∗i (t))

2]

+
m
∑

j=1

e2εt

2 [(vj(t)− v∗j (t))
2 + (zj(t)− z∗j (t))

2])

≤ 1
2 [1 + σe2εσ

m
∑

j=1
ēj max

1≤i≤n
{|qji|Ni}]‖ϕu − ϕ∗

u‖
2

+1
2 [1 + τe2ετ

n
∑

i=1
āi max

1≤j≤m
{|dij |Lj}]‖ϕv − ϕ∗

v‖
2

+‖ϕ̄u−ϕ̄∗
u‖

2

2 + ‖ϕ̄v−ϕ̄∗
v‖

2 .
(22)

By multiplying both sides of (22) with2e−2εt , we get
n
∑

i=1
[(ui(t)− u∗i (t))

2 + (yi(t)− y∗i (t))
2]

+
m
∑

j=1
[(vj(t)− v∗j (t))

2 + (zj(t)− z∗j (t))
2]

≤ e−2εt·

{[1 + σe2εσ
m
∑

j=1
ēj max

1≤i≤n
{|qji|Ni}]‖ϕu − ϕ∗

u‖
2

+[1 + τe2ετ
n
∑

i=1
āi max

1≤j≤m
{|dij |Lj}]‖ϕv − ϕ∗

v‖
2

+‖ϕ̄u − ϕ̄∗
u‖

2 + ‖ϕ̄v − ϕ̄∗
v‖

2}
≤ e−2εt ·

{

M∗[‖ϕu − ϕ∗
u‖

2 + ‖ϕv − ϕ∗
v‖

2]
+‖ϕ̄u − ϕ̄∗

u‖
2 + ‖ϕ̄v − ϕ̄∗

v‖
2
}

(23)
for all t ≥ 0 , where

M∗ = max{[1 + σe2εσ
m
∑

j=1
ēj max

1≤i≤n
{|qji|Ni},

1 + τe2ετ
n
∑

i=1
āi max

1≤j≤m
{|dij |Lj}}.

LetM = M∗ + ‖ϕ̄u−ϕ̄∗
u‖

2+‖ϕ̄v−ϕ̄∗
v‖

2

‖ϕu−ϕ∗
u‖

2+‖ϕv−ϕ∗
v‖

2 > 1, from (23),
we obtain

n
∑

i=1
[(ui(t)− u∗i (t))

2 + (yi(t)− y∗i (t))
2]

+
m
∑

j=1
[(vj(t)− v∗j (t))

2 + (zj(t)− z∗j (t))
2]

≤Me−2εt(‖ϕu − ϕ∗
u‖

2.+ ‖ϕv − ϕ∗
v‖

2),
(24)

for all t ≥ 0. Then(u∗T (t), v∗T (t))T is globally ex-
ponentially stable.

SinceIi(t), Jj(t) are continuously periodic func-
tions defined ont ∈ [0,∞) with common period
ω > 0, then for any natural numberk, ui(t + kω)
and vj(t + kω) are the solution of (1). Thus, from
(24) there exist constantN > 0 andδ > 0, such that

|ui(t+(k+1)ω)−ui(t+kω)| ≤ Ne−δ(t+kω), (25)

|vj(t+(k+1)ω)−vj(t+kω)| ≤ Ne−δ(t+kω), (26)

for i = 1, 2, . . . , n, , j = 1, 2, . . . ,m, t > 0.
It is noted that for any natural numberp,

ui(t+ (p+ 1)ω)

= ui(t) +
p
∑

k=0

(ui(t+ (k + 1)ω)− ui(t+ kω)).

Thus

|ui(t+ (p+ 1)ω)|

≤ |ui(t)|+
p
∑

k=0

|ui(t+ (k + 1)ω)− ui(t+ kω)|.

(27)
Since ui(t) is bounded, using Weierstrass criteria,
it follows (25) and (27) that{u(t + pω)} uni-
formly converges to a continuous functionu∗(t) =
(u∗1(t), u

∗
2(t), · · · , u

∗
n(t)) on any compact set ofR.

Similarly, sincevj(t) is bounded, from (26) that
{v(t+pω)} uniformly converges to a continuous func-
tion v∗(t) = (v∗1(t), v

∗
2(t), · · · , v

∗
n(t)) on any com-

pact set ofR.
When ui(t), u′i(t), vj(t) and v′j(t) are bounded,

similarly, they can be proved that{y(t+ pω)}, {z(t+
pω)} uniformly converge to continuous function
y∗(t) = (y∗1(t), y

∗
2(t), · · · , y

∗
n(t)) and z∗(t) =

(z∗1(t), z
∗
2(t), · · · , z

∗
m(t)) on any compact set ofR, re-

spectively.
Now we will show that(u∗T (t), v∗T (t))T is the

ω− periodic solution of system (1). First,u∗(t), u∗(t)
areω− periodic function, since

u∗(t+ ω) = lim
p→∞

u(t+ (p + 1)ω) = u∗(t),

v∗(t+ ω) = lim
p→∞

v(t+ (p+ 1)ω) = v∗(t).
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Second, we prove that(u∗T (t), v∗T (t))T is a solution
of system (1).

In fact, sinceIi(t + pω) = Ii(t), Jj(t + pω) =
Jj(t), and







































































































dui(t+pω)
dt

= −ui(t+ pω) + yi(t+ pω),
dyi(t+pω)

dt
= −(1− αi)ui(t+ pω)

−(αi − 1)yi(t+ pω)− ai(ui(t+ pω))·

[bi(ui(t+ pω))−
m
∑

j=1
cijfj(vj(t+ pω))

−
m
∑

j=1
dijfj(vj(t+ pω − τji))− Ii(t)],

dvj(t+pω)
dt

= −vj(t+ pω) + zj(t+ pω),
dzj(t+pω)

dt
= −(1− βj)vj(t+ pω)

−(βj − 1)zj(t+ pω)− ej(vj(t+ pω))·

[hj(vj(t+ pω))−
n
∑

i=1
pjigi(ui(t+ pω))

−
n
∑

i=1
qjigi(ui(t+ pω − σij))− Jj(t)],

(28)
for i = 1, 2, · · · , n, j = 1, 2, · · · ,m.
Since{u(t + pω)} and{v(t + pω)} uniformly con-
verge to continuous function

u∗(t) = (u∗1(t), u
∗
2(t), · · · , u

∗
n(t)),

and
v∗(t) = (v∗1(t), v

∗
2(t), · · · , v

∗
m(t)),

respectively.{y(t+ pω)} and{z(t+ pω)} uniformly
converge to a continuous function

y∗(t) = (y∗1(t), y
∗
2(t), · · · , y

∗
n(t)),

and
z∗(t) = (z∗1(t), z

∗
2(t), · · · , z

∗
m(t)),

respectively. Under the hypotheses(H1)− (H5), (28)
implies that
{dui(t+pω)

dt
}, {dyi(t+pω)

dt
}, {

dvj (t+pω)
dt

}, {
dzj (t+pω)

dt
}

uniformly converge to continuous functions on any
compact set ofR, respectively. Thus, letp → ∞,
we obtain























































































du∗
i (t)
dt

= −u∗i (t) + y∗i (t),
dy∗i (t)
dt

= −(1− αi)u
∗
i (t)− (αi − 1)y∗i (t)

−ai(u
∗
i (t))[bi(u

∗
i (t))−

m
∑

j=1
cijfj(v

∗
j (t))

−
m
∑

j=1
dijfj(v

∗
j (t− τji))− Ii(t)],

dv∗j (t)

dt
= −v∗j (t) + z∗j (t),

dz∗j (t)

dt
= −(1− βj)v

∗
j (t)− (βj − 1)z∗j (t)

−ej(v
∗
j (t))[hj(v

∗
j (t))−

n
∑

i=1
pjigi(u

∗
i (t))

−
n
∑

i=1
qjigi(u

∗
i (t− σij))− Jj(t)],

(29)

for i = 1, 2, · · · , n, j = 1, 2, · · · ,m.

That is(u∗T (t), v∗T (t)) is a periodic solution of
system (1). From (24), we have

n
∑

i=1

|ui(t)− u∗i (t)|
2 +

m
∑

j=1

|vj(t)− v∗j (t)|
2

≤Me−2εt(‖ϕu − ϕ∗
u‖

2 + ‖ϕv − ϕ∗
v‖

2),

for all t ≥ 0, then system (1) has oneω− periodic
solution, which is globally exponentially stable. ⊓⊔

4 Numerical example
In this section, we give an example for showing our
results.

Example 1Consider the following inertial BAM
neural networks with time delay



































d2ui(t)
dt2

= −αi
dui(t)
dt

− ai(ui(t))[bi(ui(t)))

−
2
∑

j=1
cijfj(vj(t))−

2
∑

j=1
dijfj(vj(t− τji))− Ii(t)],

d2vj(t)
dt2

= −βj
dvj(t)
dt

− ej(vj(t))[hj(vj(t))

−
2
∑

i=1
pjigi(ui(t))−

2
∑

i=1
qjigi(ui(t− σij))− Jj(t)],

(30)
for i = 1, 2, j = 1, 2, where

fj(x) = gi(x) =
1

2
(|x+ 1| − |x− 1|),

ai(x) = ej(x) =
π + arctan x

8
,

bi(x) = hj(x) = x,

Ii(t) = 0.1 sin 2t, Jj(t) = 0.1 cos 2t,

αi = 2, βj = 1.9, cij = dij = pji = qji = 0.005.

Obviously,fj(x), gi(x) satisfies the condition of hy-
potheses(H1) and Lj = Ni = f̄j = ḡi = 1;
Ii(t), Jj(t) satisfies the condition of hypotheses(H2)
and Ī = J̄ = 0.1, ai(x), ej(x), bi(x), hj(t) satisfies
the condition of hypotheses(H3)− (H5) and

a∗i = e∗j = 1, āi = ēj =
3π
16 ,

ai = ej =
π
16 ,

bi = hj = 0, b̄i = h̄j = 1,

K̄i = T̄j =
3π+1
16 , Ki = T j =

π−1
16

By simple calculation

αi − K̄i > 0, βj − T̄j > 0,
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Fig.1. Transient response of state variables u
1
(t) of Example 4.1
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Fig.2. Transient response of state variables u
2
(t) of Example 4.1
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Fig.3. Transient response of state variables v
1
(t) of Example 4.1
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Fig.4. Transient response of state variables v
2
(t) of Example 4.1
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−2 + αi −Ki + a∗i

m
∑

j=1
f̄j(|cij |+ |dij |)

+
m
∑

j=1
ējNi(|pji|+ |qji|) + a∗i Īi < 0,

2− αi −Ki + a∗i

m
∑

j=1
f̄j(|cij |+ |dij |)

+
m
∑

j=1
āiLj(|cij |+ |dij |) + a∗i Īi < 0,

−2 + βj − T j + e∗j

n
∑

i=1
ḡi(|pji|+ |qji|)

+
n
∑

i=1
āiLj(|cij |+ |dij |) + e∗j J̄j < 0,

2− βj − T j + e∗j

n
∑

i=1
ḡi(|pji|+ |qji|)

+
n
∑

i=1
ējNi(|pji|+ |qji|) + e∗j J̄j < 0,

Then, the conditions of Theorem 2 hold. It follows
from Theorem 2 that this system (30) has an unique
π-periodic solution, and all other solutions of system
(30) exponentially converge to it ast→ +∞.

For numerical simulation, the following four
cases are given:

Case 1 with the initial state

[ϕu1(0), ψu1(0), ϕv1(0), ψv1(0),
ϕu2(0), ψu2(0), ϕv2(0), ψv2(0)]

= [−0.03; 0.03;−0.07; 0.04;
−0.03; 0.04; 0.02;−0.08];

Case 2 with the initial state

[ϕu1(0), ψu1(0), ϕv1(0), ψv1(0),
ϕu2(0), ψu2(0), ϕv2(0), ψv2(0)]

= [0.01;−0.04; 0.05; 0.03;
0.01; 0.02;−0.06; 0.08];

Case 3 with the initial state

[ϕu1(0), ψu1(0), ϕv1(0), ψv1(0),
ϕu2(0), ψu2(0), ϕv2(0), ψv2(0)]
= [0.033;−0.04;−0.01; 0.07;

−0.02;−0.06;−0.03; 0.06];

Case 4 with the initial state

[ϕu1(0), ψu1(0), ϕv1(0), ψv1(0),
ϕu2(0), ψu2(0), ϕv2(0), ψv2(0)]

= [−0.04;−0.03; 0.01; 0.02;
−0.05; 0.1;−0.08; 0.09].

Figs.1 - Figs.4 depict the time responses of state vari-
ables ofu1(t), u2(t), v1(t), v2(t) of system (30), re-
spectively.

Evidently, this consequence is coincident with the
results of Theorem 2.

5 Conclusion

In this paper, we give the theorem to ensure the ex-
istence and the exponential stability of the periodic
solution for Cohen-Grossberg-type BAM neural net-
works. Novel existence and stability conditions are
stated in simple algebraic forms so that their verifica-
tion and applications are straightforward and conve-
nient. Finally an example illustrate the effectiveness.
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