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Abstract: The paper is concerned with the existence and global exponential stability of periodic solutions for
inertial Cohen-Grossberg-type BAM neural networks with time delays. With variable transformation the system
is transformed to first order differential equations. Some new sufficient conditions ensuring the existence and
global exponential stability of periodic solutions for the system are derived by constructing suitable Lyapunov
functions, using Weierstrass criteria and boundedness of the solutions. Finally, an example is given to demonstrat

the obtained results.
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1 Introduction

Dynamical characteristics of neural networks have be-
come the subject of intensive research in recent years.
As supposed in most studies of neural networks, a
mammal’s brain may be exploiting dynamic attrac-
tors for its encoding and storage of associative mem-
ories rather than static attractor[1-3]. The Cohen-
Grossberg-type BAM neural networks model (i.e.the
BAM model that possesses Cohen-Grossbherg dynam-
ics) initially proposed by Cohen and Grossberg[4],
has their promising potential for the tasks of paral-
lel computation, associative memory and have great
ability to solve difficult optimization problems. The
Cohen-Grossberg-type BAM neural networks with
time delays can be expressed as:

m

“ = —ai(ul)bw®) - 3 e (0)
= 3 iyt = 730) = Lo,
R CITOIOIED WIACHO)
= 3 gt = 03) = Jy (1),

()
We also know that it is fundamental importance to de-
termine the convergence of the solutions of a system
of differential equations to either one of a humber of
equilibria, or else to periodic solutions: in the context
of pattern recognition, content-addressable memories
are nothing more than asymptotically stable station-
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ary solutions with basins of attraction of a positive
measure[5]. Now there have been many results on the
stability of solutions of Cohen-Grossberg-type BAM
neural networks, see [6-21].

On the other hand, the inertia can be considered
an useful tool that is added to help in the generation
of chaos in neural systems. It is very useful and sig-
nificant to introduce an inertial term ( the influence
of inductance ) into the standard neural system. For
example, Li et al. [22] added the inertia to a delay
differential equation which can be described by

¥ =at —bxr+cf(r—hx(t —71)).

and obtained obviously chaotic behavior. Wheeler
and Schieve[23] added the inertia to the Hopfield
effective-neuron system with a continuous-time which
is shown to exhibit chaos. They explain the chaos
is confirmed by Lyapunov exponents, power spectra,
and phase space plots, this system is described by

T = —a11%1 —a1221 +arstanh(xy) 4 ajgtanh(zs),

Ty = —b112L9 — bioxs + blgtanh(xl) + bigtanh(zz).

Babcocka et al. [24] studied the electronic neural
networks with added inertia and founded when the
neuron couplings are of an inertial nature, the dy-
namics can be complex in contrast to the simpler
behavior displayed when they are of the standard
resistor-capacitor variety. For various values of the
neuron gain and the quality factor of the couplings
they find ringing about the stationary points, insta-
bility and spontaneous oscillation, intertwined basins
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of attraction, and chaotic response to a harmonic theith neurons at time, respectivelyg;;, d;;, p;; and
drive. Juhong and Jing [25]considered an inertial ¢;; are constants, and denote the connection strengths;
four-neuron delayed bidirectional associative mem- f; andg; denote the activation functionz;; ando;;

ory model. Weak resonant double Hopf bifurcations denote correspond to the transmission delays and sat-
are completely analyzed in the parameter space of isfy 0 < 7;; < 7 and0 < o;; < o; I; andJ; denote

the coupling weight and the coupling delay by the the external inputs on thh neurons from the neural
perturbation-incremental scheme. In [26], A kinemat- field Fyy and thejth neurons from the neural field,

ical description of traveling waves in the oscillations respectively.

in the networks is extended to networks with inertia. The initial values of system (1) are

When the inertia is below a critical value the state

of each neuron is over-damped, properties of the net-  [y;(s) = py;(s), dufzt(s) = 1hyi(s), -7 < 5 <0,
works are qualitatively the same as those without in- vi(5) = o () dv;(s) boi(s),—0 < 5 <0
ertia. The duration of the transient oscillations then INS) = Pug\S)y T = Weils), mo = 8 =

increases with inertia, and the increasing rate of the 2
logarithm of the duration becomes more than double.
When the inertia exceeds a critical value and the state WN€T€pui(s), Yui(s), pu; (s) andyy;(s) are bounded
of each neuron becomes under-damped, properties of @nd continuous function. _ _
the networks qualitatively change. The periodic solu- From the viewpoints of mathematics and physics,
tion is stabilized through the pitchfork bifurcation as  the system (1) is a class of nonlinear second-order
inertia increases. More bifurcations occur so that var- dynamical system where; > 0 is a damping co-
ious periodic solutions are generated, and the stability €fficient, then the system (I) can be considered as a
of the periodic solutions changes alternately. Further, Model overdamped (i.e. the damp tend to infinite).
stable oscillations generated with inertia are observed " Practical application it is necessary to consider the
in an experiment on an analog circuit. Others, Liu et existence and stability of periodic solutions of system
al. [27-28] investigated the Hopf bifurcation and dy- With damp (or weak damp).
namics of an inertial two-neuron system orinasingle ~_ 1his paper is organized as follows. Model de-
inertial neuron mode. The authors Ke and Miao [29- Scription and some preliminaries are given in Sec-
30] investigated stability of equilibrium point and pe-  tion 2. In Section 3, the sufficient conditions are
riodic solutions in inertial BAM neural networks with ~ derived for the existence and exponential stability of
time delays and unbounded delays, respectively. periodic solutions for m_ernal Cohen—Grossberg—type
To the best of our knowledge, few authors have BAM ”e“”?" networks W'th time delays. In Sec“or? 4,
considered the existence and exponential stability 2" illustrative example is given to show the effective-

of periodic solutions for the Cohen-Grossberg-type gess OT the p_ropcgsed theory. Finally conclusions are

BAM neural networks, which is very important in  Grawn in section 5.

theories and applications. We consider the following

Cohen-Grossberg-type BAM neural networks with in- ot s :

ortia, 2 -Model description and preliminar
ies

du; (t
= —oi gt

Throughout this paper, we make the following as-
sumptions wheré=1,2,--- n,j=1,2,--- ,m.

(H1) The activation functiong;(-), g;(-) are bounded
and satisfy Lipschitz condition, i.e., there exist
constantL; > O,fj > 0,N; > 0,g; > 0, such that

d2u;
i = (i (1)) i (i (1)
- -21 cij fi(v5(t) — Zl di f5(v(t = 754)) — Li(t)],
J= J=
d?v; dv;
i = =B = e u(1)lhy (05(1)
- Z}lpjigz(uz'(t)) - ; qjigi(ui(t — 0i5)) — J;(t)],

) ) (1) :
fori =1,2,---,n,j = 1,2,--- ,m, where the sec- [f5(v1) = fi(w2)l < Lylor —waf, - [f(@)] < [
ond derivative are called inertial term of system (1);

a; > 0 andgp; > 0 are constantsy;(t) andv;(t) are

the state of théth neurons from the neural fielf;

and thejth neurons from the neural fielel, at timet,

respectivelyy; (u;(t))ande;(v;(t)) represent amplifi-

cation function of theith neurons and th&h neurons

at timet, respectivelyp;(u;(t))andh;(v;(t)) are ap-
propriately behaved function of thgh neurons and
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<
|9i(v1) = gi(v2)] < Nifor —va|,  |gi(2)] < gis
for Vui,ve,z € R.
(Hp) I;(-) and J;(-) are continuously periodic func-
tions defined ot € [0,00) with common period
w > 0, and satisfy
0 < [£:(t)]

<L, 0<Z|J;@) <5,
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wherel; > 0, J; > 0 are constant.

(Hs) a;(-), e;(-) are continuously differentiable func-
tions and satisfy
lai(z)| <af, 0<gq; <ai(z)<a;, VreR,
lef(z)] <ej, 0<e;<ej(x)<e, VreR;

wherea;, €7, a;, ¢;,a;,€; > 0 are constant.
(Hy4) b;i(+), hj(-)are continuously differentiable func-
tions and satisfy
b;(0) = 0,
h](o) =0,

0<b, <bj(z) <

b;, Yz €R;
0 < hy; < hj(x) < hy,

Vr € R;
whereb;, b, b;, h; > 0 are constant.

(Hs) a;i(-),b;(-),e;(-), h;(-) are continuously differ-
entiable functions and satisfy

0< K; < (a;(z)bi(z)) < K;, Vo € R;
0<T; <(ej(x)hj(x)) <Tj,Va,y € R;

whereK;, Tj, K;, T; > 0 are constant.
Introducing variable transformation

yi(t) = 20 4 i(t), i = 1,2, ,n,
z(t) = dt

then (1) and (2) can be rewritten as

Buell) — _uy(t) + i(t),
B = —(L = ap)ui(t) — (o — Dui(t)
—ai(u; (£))[bi (wi(t)) — Zl cij f(vi(t))
pa
- Zl dij f5(v;(t = 754)) — Li(t)],
pa
T = vt >+zj<t>,
Bl — (1= B)vj(t) — (8) — )z(1)
—e;(vj (1) [hy (v;(t)) — zl pjigi(ui(t))
— ;q]‘igi(ui(t —0i;)) — J;(t)],
3)
and
ui(s) = @uils), 29 = pui(s), —1<s <0,
yz(s) = ‘;Duz(s) + T;Z)m(s = Qbui(s), —7<s< 07
vj(5) = puj(s), L = 4i(s), -0 <s<0,
zj(s) = ‘;DUj(S) + wvj(s = Quj (s), —0 <s<0,
4)
fori =1,2, ,n, i =1,2, ,m
Let
_ u;(t) N[V (t)
un = ) v = (1) )
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system (3) can becomes

dU;(t) + P X
dt A;Ui(t) (E(ul(t)7vj(t))> - ©
avj(t) + P "
- — _B]‘/j(t) <Gj(ui(t)7 v; (t))) ’ (6)
where

1 —
b= ( 15 B >
Fi(ui(t),v;(t)) = —ai(ui(t))[bi(ui(t))

_Zczjfj v;(t def] (vj(t = 750)) — Li(B)],

Gj(uz'(t) v;(t)) = —ej(vj(t))[hj (vj(¢))

- ijzgz uz Z Qngz uz Ulj)) Jj (t)]
fori=1,2,---,n 1,2,
Let
u(t) = (ur(t), ua(t), -~ un(®)”,
() = (vi(t),v2(t), -+ o ()T

Definition 1. Let (u*7(t),v*T (t))” be anw— peri-
odic solution of system (1) with initial value

uie) = i), Py, r<s<o
I /O R
Yj (S) = C,va(S), dt = wvj(8)7 -0 <s<0.

For every solution(u” (), v (t))” of system (1) with
any initial value

du;(s)

ui(s) = Pui(s), e Yui(s), —17<s<0,
d .
v;(s) = wu;(s), UCJZES) =1yi(s), —0<s<0,

If there exist constantg > 0 and M > 1, such that

n

> (i) = uf(1)® +

=1 7
< Me_m[HSDu -

(v5(t) = 05 (1))?

s

Il
—_

X2 + llpw — ©EN12),t > 0,
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then periodic solutior{u*” (t),v*7 ()7 is said to be From (9), we have
globally exponentially stable, where J
28| < Jipui(0)]

n
lou — @5lI? = SHF<021‘SDui(t) — @i (t)?, m
o i ) )
Z +-[KiRi +a; Yy fi(leijl + |dij]) + L], (10)
j=1

oo — @5)> = sup Z |00 (1) — @5 ().

—0o<t<0
” Formula (10) shows that all;(¢) are bounded for
) i = 1,2,---,n,t > 0. Similar to the above
3 Main results method, we can obtain; (), v}(t)are bounded; =
1,2,---,m,t>0. O

In this section, we can derive some sufficient condi-
tions which ensure the globally exponential stability t1aorem 2 Under the hvpothes §L) — (H-). if
and existence of periodic solutions for system (1) by YP &81) - (Hs),
constructing a suitable Lyapunov function and some o —K; >0, B;—T;>0,

analysis techniques, such as Weierstrass criteria of se-

ries, the method of magnifying and shrinking of in- e N F N
equality, etc. 2+a; — K; +aq; j;l filleij| +1dij|)
Theorem 1 For system (1), under the hypotheses j; eiNi(|pjil + lgjil) + ai 1 <0,
(Hy) — (Hs), wi(t), ui(t), v;(t),v;(t) are bounded, mo
fori=1,2,---,n,j=1,2,"-- ,m,t > 0. 2— o — K +af 3o fille| + |digl)
j=1
Proof: It follows from (1) that + 50 @Li(ley] + dig]) + at T < 0,
j=1
Pluit)] _ dluz()l £ -
@z = =243 =T +¢; 3 Gilpsl + lgjil)
—sgn(uz( ))ati (1 (£) )i (ui (1)) . )
Fsgn(ui(t))as (1)) [ 32 e (0;(1)) * 2 ailyleil +1dijl) + €5 J; < 0,
=1 “n
+ X difilwt -+ L) 27 L 2 dlleal i)
j=1 n_ _
< — O] ¢ (1) + 21 &;Ni(Ipjil + lgjil) + €5 J; <0,
+a;[ > fj(|cz'j| + |dij]) + L) fori=1,2,--- ,n,j =1,2,--- ,m, then system (1)
j=1 has onev— periodic solution, which is globally expo-
(7) nentially stable.

From (7), we can obtain
Proof: Let (u*T(t),v*T(t))” be an solution of sys-

lui(t)] < CreMt + Coet2t tem (1) with initial value
PO Fillel +ldg) + B @) ey i)
' J; e ’ u; (8) = py;(s), dt( ) = Pui(s), -7 <s <0,
—ait\/aZ K, wiN s dvj(s) | < o<
where); » = ——Y+——1 (,C; are any real con- vj(s) = #y;(s), a y(s), =0 < s <0.
stants. Sincey; > 0, we haveRe(\1) < 0, Re(\2) <
0, formula (8) shows that all;(¢) are bounded foi = (u™'(t),v" (t)) be an solution of system (1) with initial
1,2,--- ,n,t > 0. We may assume that;(t)| < R;, value
R; > 0 are constantg,=1,2,--- ,n. dui (s)
On the other hand, from (1) we also can obtain i (8) = pui(s), ;t = Yyi(s), —7 < s <0,
du; —a duz o= dv;(s
D) — emoatdulD) _ g-ait [5ea () vj(s) = puj(s), c]li ) Yoj(s), 0 <5 <0
[bi(ui(s)) — > cij fi(u;(s)) . dul(t) | . dor(t) |,
= yr) = SHD i),z = S+ ),

— > dijfi(uj(s — 7ij)) — Li(s)] s, (9) 0i(t) = ( wi(t) — u; (t) ) V= ( v (t) = vj (1) )
j=1 _

yi(t) — yi (1)
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fori=1,2---,n,j=12-,m
From (5), we have

ui(t) = 0

dt —AUH) + P (Fi(ﬁi(t)aﬁj(t))> » (1)

where
Fi(ai(t), vj(t)) = —ai(ui(t))[bs (wi(t))
- Zczyfy U] Zdljf] Uj — Tji )) — Li(t)]

j=1

+a;(u} t) — Z cij fi(v5 (1))

_Zdwfj

Left multiplying both sides of (11) with

— 751)) — Li(1)].

OF 40 = —(ui(t) — uf(£)? + (1 — 0q) (wi(t) — 7 ()’
+a(ui(t) — i (8)(vi(t) — v () + (vi(t) — y; (¢))
{- [az(uz(tngi(uz'(t)) — a;(uf(t))bi (v (t))]
+a;(u;(t)) Zl cij[fi(vj () — £ (v} ()]

=
+a;(u;(t)) Zl dij[fj (v (t — 750)) = f3 (0} (t = 750))]

=
+[a,~(ui(t)) - ai(“?(t))]’
[E waj(v (t)) + Z duf]( i(t Tji))]

+loi — u (t)l—u’f( )
x (uq(t) — ui () (wi (¢ ) y;i (1))
+yi(t) HOIE {a, Z ’cZ]‘L ’UJ( ) — ( )l

+a; Z |dij| L '\Uj( — 7ji) — vi(t — 75)]

=1
+aju;(t) — ui(t)] 2 fi(leis| + |dijl)
+a; I ui(t) )]}
(12)
where
0K < ai_ai(ui(t))bi(u,-(t)) — ai(u;(?) <K,
ui(t) — uj(t)
I )
a; — K; >0,
E-ISSN: 2224-2880 163
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it follows from (12) that

Uzd_US%[_2+O‘Z K;
+af 21 (|CZ]| +|d2]|)+a I]( ()—uz‘(t))2
‘]:

+i2—a— K, +a Z Fillei| + 1dij))
+mg§1 i(lei| + ’du‘) +a; L] (yi(t) — 7 (1))
8 8 el 0 - 50
+4 ]gl |dij| Lj (v (t — 750) — v} (t = 7))
(13)

Similar to the above method, if

B =T >0,

we can obtain

v % s —2+6-T;
5 3 (Il + la) + €55 w(6) = 5 0))°
+%[2 B T —|—e Zgz(‘pu“"‘qw’)
+2; ;1 (gl + lazil) + €15 (25(t) — 23.(1))?
% 3 Il N (t) — (1)
+5 i |q5i| Ni (ui (t — 045) — uf (t — 035))*
- (14)

We consider the Lyapunov functional:

V(t) = Va(t) + Va(t),
where
Vi(t) = {IIU(t |2 2t
1= 1
+4 zl dij| Ly fi ., (03(s) = v}(5))2e(=F730) ds
]:

(15)
Z {1 2et

+7 2 %le Sy, (ils) = uj (s))?e*(Foi) s,

) (16)
e > 0is a small number. By (13), we have the up-
per right Dini-derivativeD*V; (¢) of Vi (¢) along the

3
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solution of (11)

L

U

25t + E€2€t“Ui(t)”2

AU
il(v

Tji) —

et{EHU

DTVi(t) =

'U] (t))262€(t+7'ji)

i(t) —
vj(t = 70))%e*!] }
O +3[-2+ i — K,

|d;j

oS!
INgE

+
Il

J
vj(t —

M:“

<

)

s*ﬂ.

o 3 Files +1d) +afF] ) — i )

+§[2—ai—§i+aff}ﬁ(lczjlﬂdm)
+a2-§:1 i(les] + 1dig)) + af T (i t) — i (1))
+7§ e L (05 (8) — w3 (1))?
14 ij dif | L (05 (£) — v} (1)) 2e2 }
g%ileet{ — 24— K,
_g Filess| + Idss)) + af B] (ualt) — u (£))?
+[2e 42 al—ﬁﬁa;‘];ﬁ(lczler|dij|)

4 f:l Ly (o] + Idis)) + a2 L] (wi®) — i (8))?
p2

T Zl Lj(leij| + |digle* ™) (v; (t) — vi (1))}
‘7:
7)
Similar to the above method, by (14) we have the
upper right Dini-derivativeD ™ V5 (t) of V5(t).

DVa(t) < 3 Zl e*{[2e -2+ 8; - T}
J:

€5 2 Gillpul + lal) + e; ;] (v(t) — vy (1))?

Xuerui Wei

v; (£)*}
T+ ¢ Zlgi(\pji\ +1g5il)
1=

Vi (1))

+a; (’clj‘ + ’du‘) +a; [](yZ( ) —

J

+1 Zl e?t{[2e — 2+ 5; —
]:
n

SH.MS

+ 3 Ly (Jeig| + 1dgle®) + €3 (w5 (t) -

T, +e! ; gi(Ipjil + lsi)
25(1)2).
(19)

From condition of Theorem 2, we can choose a small
€ > 0 such that

[5"'2_5]

+€; ;Ni(\pﬁ\ + lgjil) + € i) (2(t) —

2 — 2+ —KZ-Jra;‘]ilfj(lCiﬂ + |dij|)
- i & Ni(lpjil + lasile**7) + afTi <0,
26+2—-o; — K; +aj ]Z f](‘clj’ + ‘dw’)
+ai];1 Lj(Jeij| + 1diz]) + atl; <0,
2 =2+ —T;+e égz'(\l)ji\ + lgjil)
+ f aiL;(|eij| + dijle®T) + €T <0,
2+2-B;—T;+e Zgz(\pﬂ\ + |qjil)
+€; El Ni(lpjil + lgzl) + €5J; <0,
fori=1,2--- n,j=12---,m

From (19), we getD™V (¢) < 0, and soV (t) <
V(0), for allt > 0. From (15) and (16), we have

n n U; (1) 2 ||V(t)||2
#2242 -8~ L+ ¢ X aipal + lawi) UED e R P
85 2 Nillpsil + lasil) + e; Jj] (%(t) — z;(t))? ) Sl (ui(t) — i (8) + (wi(t) — v ()]
425 3 Nallpsl + lalet=es) (s(t) — (1)) 2 CORLIOUSICTOREAC)
(18) (20)
It follows from (17), (18) that
IR A&
DYV () = D*Vi(t) + D Va(t) Vo) = 275
<gye{2e-2+a; - K;+af Zlfj(\cz-j! Hldil) 4% Y Jdyl Ly [0, (v(s) — 3 (s)) 2240 ds)
i= J= j=1
+ 2 &Nl +lagle™7) +aiLl(t) —ui(®) 4 D (IEPE
j:l
+[26+2 - — K +af 3 filley| + |di]) +% Z lqjalNi - [2,, (ui(s) — i (s))2e%(+70) ds)
j=1 i

164
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_ {(som(om:i(o»z (gam(ow::i(mf

> +

z:lm

% Z |dij|L; f S%J @:j(s))2e2€(s+Tji) ds}
n Z{ sovJ(O %J (0))? i (v (0 )_295:]‘(0))2

+6] Z |qji| N - f ‘PM( )— SDZZ-(S))Ze%(S-FUU)dS}
lew—eull® | llgu—eil?
< SO 2%0 + ® 24,0

+5e*T Z; ai 1%%1{\652'3'!%}”% — 3|2

llpo =311
+

m
g 20 . N % ]2
57 2 & max {las Nitlew = il

e —511°
+ 2

m
= L1+ 07 3 &5 max {JaziNiflow — 232
j=1 <i<n
n
5l +7e* Y @ max {[di|Li v — wsll?
i=1 <j<m

lpu—pil® | llov—pal?
+ 2 + 2

(21)
SinceV (0) > V(t), from (20) and (21), we obtain

3 5 (ult) — i ()7 + () — v (1)
3 S50 — 02 + (50 — 5 0)2)
o0 2 & o (Nl — o3

< 3ll+oe
[1 + T2 Z a; max {’d”’L }]”901) :”2

2¢et

.

—_

lpu—@5 112 ||s0u soull
+ + 1

2
(22)
By multiplying both sides of (22) witRe 2! | we get
21[(ui(t) —uj(t))? + (yilt) — yr (1))
+ 2_31[(% (t) = v5(1)* + (2(t) — 25 (1))?]
S‘Ye_ 2€t
2e0 * |12
{[1+0ce j; ; max {lail NiYllou — il
1+ Te*T Z a; max {[di;|L;}][lpo — wsll?
i=1 <jsm
+1@u — FLlI7 + 160 — 5117}
<e %t {M;[Hsou — sOZHz;r llow — @517
+|gu — Bl + 150 — 25117}
(23)

forallt > 0, where

M* = max{[l + ge*° Z ej max {|q;i| N},
= T 1<i<n

147627 3" @ max {Idij|Lj}}-
i=1 1<i<m
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e imale a2
Let M = M* + |Pu—&5 |17 +]|6v—&5 |l

TouosPHTon—eil > L from (23),

we obtain
§[<ui<t> —w ) + ()~ (1))
+ Z [(v5(t) = 03 (8))? + (25(t) — 25 (t))?]
< Me‘%t(l!sou onll + llow — @3l1%),
(24)

forall t > 0. Then(u*T
ponentially stable.
Sincel;(t), J;(t) are continuously periodic func-
tions defined ont € [0,00) with common period
w > 0, then for any natural numbek, u;(t + kw)
andv;(t + kw) are the solution of (1). Thus, from
(24) there exist constad{ > 0 andd > 0, such that

(t),v*T(t))T is globally ex-

s (t+ (k+1)w) —u(t+hw)| < Ne 25 - (25)

v (t+ (k+1)w) — v (t+ kw)| < Ne 0EFk) - (26)

fori=1,2,...,n, ,7=1,2,...,m, t>0.
It is noted that for any natural numbgr

ui(t+ (p+ 1w)

= u;(t) + kZi:O(ui(t + (k4 1Dw) — u;(t + kw)).

Thus
lui(t + (p + ;)W)\
< |ui(t)| + kgo [ui(t + (k + Dw) — u(t + kw)|.

(27)

Since u;(t) is bounded, using Weierstrass criteria,
it follows (25) and (27) that{u(t + pw)} uni-
formly converges to a continuous functiari(t) =
(uj(t),us(t), - ,u;(t)) on any compact set at.

Similarly, sincev;(t) is bounded, from (26) that
{v(t+pw)} uniformly converges to a continuous func-
tion v*(t) = (vi(t),v5(t), -+, vy (t)) on any com-
pact set ofR.

When u;(t), u;(t),v;(t) and v;(t) are bounded,
similarly, they can be proved th (¢t + pw)}, {z(t +
pw)} uniformly converge to continuous function

y* (t) = (yf (t)> y; (t)v e >y;kz(t)) and 2~ (t) =
(27 (t), 25(t),--- , 25, (t)) onany compact set dt, re-
spectively.

T (1), 07 (¢))T is the
u*(t)

Now we will show that(u
w— periodic solution of system (1). First;(t),
arew— periodic function, since

u(t+w) = pli_)rrolo u(t + (p+ Lw) = u*(t),
v (t+w) = pli)rgo v(t+ (p+ 1)w) = v*(t).
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Second, we prove that*7 (t),v*7 (t))” is a solution
of system (1).

In fact, sincel;(t + pw) = I;(t), J;(t + pw) =
J;(t), and

Quillbp) — it + pw) + yi(t + pw),
duslhp) — (1 — 0 (t + pw)
—(a; — D)y;(t + pw) — a;(u;(t + pw))-

[b(wi(t + pw)) — - cij f(v; (t + pw))

7=1
= ; dij (v (t + pw — 751)) — Li(t)],
o (EP0) — oy (b + pw) + 2 (t + pw),
TG — —(1— By (t + pw)
(ﬁ] )z] (t +pw72 €; (Uy (t +pw))'
[hj(vj(t + pw)) — ;py’igi(ui(t + pw))

- i qjigi(wi(t + pw — 035)) — J;(t)],
(28)

i=1

fori=1,2,--- n,j=12,-
Slnce{u(t + pw)} and {v(t + pw)} uniformly con-
verge to continuous function

u*(t) = (ui(t), uz(t), - un(t)),
and

v*(_t) :(vf(t)avz(t)a"' 7U:n(t))' .
respectively{y(t + pw)} and{z(t + pw)} uniformly
converge to a continuous function

y () = (yi (), y5(1), -, yn(t)),
and

Z(t) = (21 (1), z5(8),- -, 2 (1)),
respectively. Under the hypothed@s; ) — (Hs), (28)
implies that
{duz(t-i-pw } {dyL t+pw) } {dv](t—i-pw } {dz](t—i-pw)}
unlformly converge to continuous functlons on any
compact set ofR, respectively. Thus, lep — oo,
we obtain

WD = ur(t) + i (0),
20 — u—%>m><%—m%m
S CONDICHOIES SEHACHD)
P2
- -21 dij fi (V5 (¢ = 752)) — Li(t)],
P2
"= (0 + %)
i ORI CEREA0
CHON GO S CHO)
- é qjigi(uj (t — 0i5)) — J; ()],
- (29)
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fori=1,2,---,n,j=1,2--,m.

That is (u*? (t),v* (¢)) is a periodic solution of
system (1). From (24), we have

|2+Z|UJ —vj

< Me™ 2“(H% -

n

D it

1=1

()OU,H2 + HSDU - @v”z)v

for all ¢ > 0, then system (1) has one— periodic
solution, which is globally exponentially stable. O

4 Numerical example

In this section, we give an example for showing our
results.

Example 1 Consider the following inertial BAM
neural networks with time delay

i = i — ()i (9)
- Z cij fi(v;(t)) — Z dij fi(vj(t = 75)) — Li(t)],
f;ét = ;250 J@@(Q)Uw(vj@))
- ;pjigi(ui(t)) - 21 qjigi(ui(t — oi5)) — J;(t)],
- - (30)
fori=1,2,5 = 1,2, where
() = i) = 5l + 1]~ la — 1)),
T 4+ arctan x
a;(z) = ej(z) = ?7
bi(z) = hj(z) =
I;(t) = 0.1sin2t, J; ( ) = 0.1cos 2t,

=2, Bj = 1.9, ¢ij = dij = pji = ¢;i = 0.005.

Obviously, f;(z), g;(x) satisfies the_condition of hy-
pothesesH;) andL; = N; = f; = g = 1;
Ii(t), J;(t) satisfies the condition of hypothesgs$;)
andl = J = 0.1, a;(z), e (), b;i(z), hj(t) satisfies

the condition of hypothese{:ﬂg) — (Hs) and
af:ej»zl, C_Li:éj:?l’—g,
a; = §j = 17r_6’ _ _
o 5 3m41 —1
Ki=T;=3H K, =T,=11
By simple calculation
o —K; >0, 8, —T; >0,
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=
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0.03
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mo_
24 — K; +af -21 Filleig| + |dig))
j:

+ 3 & Ni(|pjl + lazil) + a; I; < 0,

s

1

j
2—o; — K; +a; Zlfj(’clj‘ + |dis])

+ > aiLj(leij| + |dij]) + af T <0,

1

J
n

=248 —T;+e€] Zl?]iﬂpjﬂ + lgjal)
1=

n —
+ 2 ailj(leg| + 1dij]) +€5J; <0,
i=1
n
2-Bj—T;+e; ; Gi(|pjil + lajil)
n —
+ > & Ni(|pjil + lgjil) + €5 J; <0,
i=1

Then, the conditions of Theorem 2 hold. It follows

Xuerui Wei

Figs.1 - Figs.4 depict the time responses of state vari-
ables ofuy(t),ua(t), v1(t), v2(t) of system (30), re-
spectively.

Evidently, this consequence is coincident with the
results of Theorem 2.

5 Conclusion

In this paper, we give the theorem to ensure the ex-
istence and the exponential stability of the periodic
solution for Cohen-Grossberg-type BAM neural net-
works. Novel existence and stability conditions are
stated in simple algebraic forms so that their verifica-
tion and applications are straightforward and conve-
nient. Finally an example illustrate the effectiveness.
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Education Department of Zhejiang Province (grant

from Theorem 2 that this system (30) has an unique No.Y201019247), the Key Research Project of Shaox-

mw-periodic solution, and all other solutions of system
(30) exponentially converge to it as— +oco.

For numerical simulation, the following four
cases are given:

Case 1 with the initial state

[0u1(0),%41(0), ©u1(0), %41 (0),
©u2(0), 1u2(0), ©u2(0), 102 (0)]

= [-0.03;0.03; —0.07; 0.04;
—0.03;0.04;0.02; —0.08];

Case 2 with the initial state

[0u1(0), %41 (0), 01 (0), 01 (0),

©u2(0), 1u2(0), ©u2(0), 12 (0)]
= [0.01; —0.04; 0.05; 0.03;
0.01;0.02; —0.06; 0.08];

Case 3 with the initial state

[0u1(0),%41(0), ©u1(0), %1 (0),

(pu2(0)7 ¢u2 (0)7 Pv2 (0)7 ¢v2 (O)]

= [0.033; —0.04; —0.01; 0.07;
—0.02; —0.06; —0.03; 0.06];

Case 4 with the initial state

[0u1(0),%41(0), ©u1(0), %1 (0),
©u2(0),Yu2(0), pu2(0), 1y2(0)]

— [~0.04; —0.03;0.01; 0.02;
—0.05;0.1; —0.08; 0.09].
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